MÜLLER-BBM

Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München

Telefon +49(89)85602 0 Telefax +49(89)85602 111

www.MuellerBBM.de

M. Eng. Thea Hirle Telefon +49(89)85602 124 Thea.Hirle@mbbm.com

04. Februar 2021 M157668/01 Version 1 HIRL/STS

Verteiler

ada Bauträger GmbH Herrn Dieter Aue Herrn Jakob Lorenz per E-Mail: aue@ada-architektur.de lorenz@ada-architektur.de

Josefstaler Straße Schliersee

Konzept Wärmeschutz und Bauakustik

Bericht Nr. M157668/01

Inhaltsverzeichnis

1	Zusammenfassung	2
2	Situation	2
3	Grundlagen	3
4	Angaben zum Objekt	3
5	Wärmeschutz	4
6	Bauakustik	12

Dieser Bericht umfasst insgesamt 44 Seiten, davon

19 Seiten Text und

18 Seiten Anhang A: Bauteilaufbauten

7 Seiten Anhang B: Nachweis des sommerlichen Wärmeschutzes nach DIN 4108-2

Müller-BBM GmbH HRB München 86143 USt-ldNr. DE812167190

Geschäftsführer: Joachim Bittner, Walter Grotz, Dr. Carl-Christian Hantschk, Dr. Alexander Ropertz, Stefan Schierer, Elmar Schröder

1 Zusammenfassung

Im vorliegenden Bericht werden die wesentlichen wärmeschutz- und schallschutztechnische Standards beschrieben und überschlägige Maßnahmen definiert, mit denen diese eingehalten werden können.

In folgenden Punkten weicht die aktuelle Planung von den definierten Standards ab und sollte entsprechend angepasst werden:

- Die Trenndecke zwischen dem Einkaufsmarkt und den darüberliegenden Wohnungen ist aus schalltechnischer Sicht als Stahlbetondecke mit ≥ 300 mm auszuführen, um die Anforderungen gemäß Abschnitt 6.1.5 erfüllen zu können.
- Der Aufzugsschacht, welcher im Dachgeschoss an schutzbedürftige Räume grenzt, ist mit einer 280 mm dicken Betonwand und zusätzlich einer Vorsatzschale (1 cm Fuge, 5 cm Ständerwerk, 2,5 cm Beplankung, ≥ 8,5 cm) auszuführen.

Hinweis: In der aktuellen Planung weisen die schutzbedürftigen Räume, welche im Dachgeschoss direkt an den Aufzugsschacht grenzen ein "größeres" Volumen über 62,5 m³ auf, was sich ungünstig auf den Schallschutz auswirkt. Um die Anforderungen der DIN 8989 auch hier einhalten zu können, ist hierfür eine 280 mm anstatt 250 mm dicke Stahlbetonwand mit Vorsatzschale notwendig.

2 Situation

Die ada Bauträger GmbH plant den Neubau eines Wohn- und Geschäftshauses mit Tiefgarage in der Josefstaler Straße in 83727 Schliersee Neuhaus.

Für das vorliegende Bauvorhaben wird der Bauantrag nach dem 01.11.2020 eingereicht, somit sind die energetischen Anforderungen aus dem Gebäudeenergiegesetz heranzuziehen. Darüberhinausgehende Standards (z. B. KfW) sind derzeit nicht vorgesehen und in der Dimensionierung der Dämmstoffdicken nicht berücksichtigt.

Es soll zudem ein guter Schallschutz realisiert werden, sodass die Bewohner bei üblichem rücksichtsvollen Wohnverhalten im allgemeinen Ruhe finden und die Vertraulichkeit gewahrt bleibt.

Im vorliegenden Bericht werden wärmeschutz- und schallschutztechnische Standards für den Neubau beschrieben und überschlägige Maßnahmen definiert, mit denen diese eingehalten werden können. Es werden erste Angaben zu den erforderlichen Bauteilaufbauten dargestellt.

3 Grundlagen

Dem vorliegenden Bericht liegen zugrunde:

- [1] Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden (Gebäudeenergiegesetz – GEG) in der ab 01.11.2020 anzuwendenden Fassung
- [2] DIN 4108-2 "Wärmeschutz und Energieeinsparung in Gebäuden Teil 2: Mindestanforderungen an den Wärmeschutz", Ausgabe 2013-07

[3] DIN 4109: Schallschutz im Hochbau

Teil 1: Mindestanforderungen, Ausgabe 2016-07 bzw. 2018-01 Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen,

Ausgabe 2016-07 bzw. 2018-01

Teil 31 - 36: Daten für die rechnerischen Nachweise des Schallschutzes,

Ausgabe 2016-07

Teil 5: Erhöhte Anforderungen, Ausgabe 2020-08

- [4] Beiblatt 2 zu DIN 4109 "Schallschutz im Hochbau Hinweise für Planung und Ausführung, Vorschläge für einen erhöhten Schallschutz, Empfehlungen für den Schallschutz im eigenen Wohn- und Arbeitsbereich", Ausgabe 1989-11
- [5] DIN 8989 "Schallschutz in Gebäuden Aufzüge", Ausgabe 2019-08
- [6] Eingabeplanung, Stand 21.01.2021, per E-Mail erhalten von Herrn Lorenz, ADA Planungs- und Bauconsulting GmbH & Co.KG
- [7] Software Dämmwerk 2021, Firma KERN ingenieurkonzepte, Version 20210120

4 Angaben zum Objekt

Der Entwurf der ADA Planungs- und Bauconsulting GmbH & Co.KG sieht ein Gebäude mit einem UG, EG, zwei OGs und einem DG vor. Es sind im Erdgeschoss ein Einkaufsmarkt sowie in den Obergeschossen 20 Wohnungen geplant. Im Untergeschoss befinden sich die Tiefgarage sowie Lager- und Abstellräume des Einkaufsmarktes und Kellerabteile der Wohnungen.

Das Gebäude wird in Massivbauweise aus Stahlbeton errichtet und erhält im 2. Obergeschoss ein Steildach in Holzbauweise. Das 1. Obergeschoss ist zurückversetzt und bildet somit Terrassen auf der Decke des Einkaufsmarktes.

Das Kellergeschoss sowie die Decken und Trennwände in den Regelgeschossen sollen ebenfalls in Massivbauweise hergestellt werden. Die nicht tragenden Innenwände werden voraussichtlich in Trockenbauweise erstellt.

Der Erdgeschossgrundriss des Bauvorhabens inklusive der Freianlagen ist nachfolgend dargestellt.

Abbildung 1. Überblick über das Bauvorhaben.

5 Wärmeschutz

5.1 Wärmeschutztechnische Anforderungen

5.1.1 Anforderungen an den Mindestwärmeschutz nach DIN 4108-2

Durch die Mindestanforderungen an den Wärmeschutz der Bauteile soll die Baukonstruktion dauerhaft vor Diffusionsfeuchtigkeitsschäden im Bauteilinneren sowie auf der Bauteiloberfläche geschützt werden. Zusätzlich soll die Wärmeübertragung durch die Bauteile verringert sowie ein hygienisches Raumklima für den Nutzer geschaffen werden.

5.1.2 Anforderung gemäß dem Gebäudeenergiegesetz (GEG)

Da es sich bei dem geplanten Neubau um ein gemischt genutztes Gebäude handelt, bei welchem weder die Wohn- noch die Nichtwohnbereiche einen nicht unerheblichen Teil der Gebäudenutzfläche aufweisen, sind die beiden Nutzungen hinsichtlich der Anforderungen getrennt voneinander zu betrachten.

Folgende gesetzlichen Mindestanforderungen an das Bauvorhaben lassen sich für die Wohngebäude- und Nichtwohngebäudebereiche beschreiben:

Energetische Gesamtqualität (Jahresprimärenergiebedarf):

Der Primärenergiebedarf¹ des Gebäudes darf nur 75 % des Primärenergiebedarfs eines definierten Referenzgebäudes aufweisen.

Energetische Qualität der Hülle:

Zusätzlich zur energetischen Gesamtqualität muss, unabhängig von der Energieversorgung und Bereitstellung, die thermische Hüllfläche eine entsprechende Qualität aufweisen. In den Wohnbereichen darf der spezifische Transmissionswärmeverlust² den Transmissionswärmeverlust eines definierten Referenzgebäudes nicht überschreiten. Die Bauteile des Nichtwohnbereichs müssen einen mittleren *U*-Wert einhalten.

Anforderung an die Nutzung von erneuerbaren Energien zur Deckung des Wärme- und Kältebedarfs

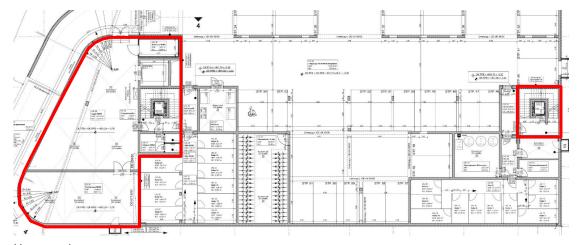
Ein gewisser Anteil der Wärmeversorgung muss aus erneuerbaren Energien erfolgen. Der Anteil richtet sich je nach verwendeter Wärmequelle Bei Verwendung der geplanten Luftwärmepumpe ist eine Nutzung von 50 % der Wärme aus Umweltwärme erforderlich.

5.1.3 Anforderungen an den sommerlichen Wärmeschutz nach DIN 4108-2

Bei Wohn- und Nichtwohngebäuden ist der sommerliche Wärmeschutz zu prüfen und einzuhalten.

Weitere Angaben zur Einhaltung des formalen Nachweises des sommerlichen Wärmeschutzes sind in Abschnitt 5.5 des vorliegenden Berichts beschrieben.

5.2 Verlauf der thermischen Gebäudehülle


Für die Definition der thermischen Gebäudehülle werden folgende Festlegungen vorgeschlagen:

- Die Treppenhauskerne, die Aufzüge sowie die Lagerbereiche des Einkaufsmarktes im Untergeschoss werden in die thermische Gebäudehülle integriert und zumindest auf niedrige Temperaturen (12 °C ≤ θ ≤ 19 °C) beheizt.
- Sämtliche Gebäudebereiche ab dem Erdgeschoss nach oben werden als auf normale Temperaturen (*θ* ≥ 19 °C) beheizte Gebäudeteile angesehen.

Ein Vorschlag für den Verlauf der thermischen Hüllfläche im Untergeschoss sowie im Erdgeschoss ist schematisch in der nachfolgenden Abbildung dargestellt.

¹ Primärenergiebedarf: Nicht erneuerbarer Energiebedarf des Gebäudes für Heizen und Kühlen inkl. des Energiebedarfs, der zur Bereitstellung der Energie nötig ist.

² Spezifischer Transmissionswärmeverlust: Wärmeverlust über die Gebäudehülle, bezogen auf die thermische Hüllfläche.

Untergeschoss

Erdgeschoss

Abbildung 2. Verlauf der thermischen Hüllfläche UG und EG.

Unter Berücksichtigung dieser Festlegungen sind sämtliche Bauteile von beheizten bzw. temperierten Gebäudezonen angrenzend an unbeheizte Technik- oder Lagerräume und die Tiefgarage sowie an die Außenluft mit einer entsprechend dimensionierten Wärmedämmung auszustatten. Die notwendigen Wärmedämm-Maßnahmen sind lückenlos an den vorgenannten Flächen anzuordnen.

5.3 Anlagentechnisches Konzept

Das derzeitige anlagentechnische Konzept sieht eine Luftwärmepumpe zur erweiterten Grundlastabdeckung und einen Gasbrennwertanlage zur Spitzenabdeckung vor. In den Wohnungen wird zudem eine Abluftanlage in den Sanitärbereichen sowie eine Nachströmung über Außenluftdurchlässe in den Aufenthaltsräumen geplant.

Die o. g. Wärmeerzeugung bietet eine mögliche Grundlage, die Mindestanforderungen gemäß dem GEG einzuhalten. Entscheidend ist hierbei der Deckungsanteil der Wärmepumpe.

Erfahrungsgemäß wird auch eine anteilige Nutzung der Wärmepumpe zur Trinkwasserbereitung erforderlich. Dies kann z. B. entweder über eine separate Hochtemperatur-"Booster"-Wärmepumpe erfolgen oder über ein entsprechendes Pufferspeicher Ladesystem, wodurch die Wärmepumpe auch zur teilweisen Trinkwassererwärmung (z. B. bis auf 35 °C) herangezogen wird.

5.4 Vordimensionierung der Bauteile der thermischen Gebäudehülle

In der nachfolgenden Tabelle ist zusammengefasst, welche Wärmedämm-Maßnahmen an den Bauteilen der thermischen Gebäudehülle bei diesem Gebäude nach
GEG-Standard erforderlich sind. Für die Fassaden- und Fensterkonstruktionen sowie
Dachoberlichter und Außentüren werden entsprechende Kennwerte genannt. Die
detaillierten Bauteilaufbauten können dem Anhang A entnommen werden.

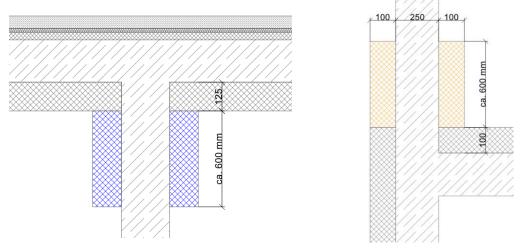
Die angegebenen Dämmstoffdicken stellen zunächst Abschätzungen auf Basis der Vorentwurfsplanung dar. Im Zuge einer genauen Flächenermittlung können die Dämmstoffdicken ggf. entsprechend angepasst werden.

Tabelle 1. Erforderliche Dämmstoffdicken und -qualitäten.

Nr.	Bauteil	Typ der Wärmedämmung	Dämm- stoffdicke in mm	<i>U</i> -Wert in W/m²K
G01	Bodenplatte UG gegen Erdreich	Perimeterdämmung (XPS) WLS 040	≥ 80 mm	≤ 0,43
G02	Außenwand UG gegen Erdreich	Perimeterdämmung (XPS) WLS 040	≥ 80 mm	≤ 0,45
G03	Bodenplatte Aufzug gegen Erdreich	Perimeterdämmung (XPS) WLS 040	≥ 80 mm	≤ 0,43
G04	Außenwand Aufzug gegen Erdreich	Perimeterdämmung (XPS) WLS 040	≥ 80 mm	≤ 0,45
G05	Decke UG nach oben gegen Erdreich	Perimeterdämmung (XPS) WLS 040	≥ 80 mm	≤ 0,44

Nr.	Bauteil	Typ der Wärmedämmung	Dämm- stoffdicke in mm	<i>U</i> -Wert in W/m²K
IW01	Wand UG zu Tiefgarage	Holzwolle-Mehrschichtplatte (WWC) R >2,7 m ² K/W	≥ 100 mm	≤ 0,34
IW02	Wand UG zu unbeheizten Kellerräumen	Holzwolle-Mehrschichtplatte (WWC) R >2,7 m ² K/W	≥ 100 mm	≤ 0,33
DE04	Decke EG	Trittschalldämmung (MW/EPS) WLG 045	≥ 10 mm	< 0.05
DE01	zu Tiefgarage	Holzwolle-Mehrschichtplatte (WWC) R >3,4 m ² K/W	≥ 125 mm	≤ 0,25
	Decke EG	Trittschalldämmung (MW/EPS) WLG 045	≥ 10 mm	_
DE02	zu unbeheizten Kellerräumen	Holzwolle-Mehrschichtplatte (WWC) R >3,4 m ² K/W	≥ 125 mm	≤ 0,24
	Decke 1.OG	Trittschalldämmung (MW/EPS) WLG 045	≥ 20 mm	
DE03	zu Außenluft	Ausgleichsdämmung (EPS) WLG 040 Wärmedämmung (MW/EPS) WLS 035	≥ 40 mm ≥ 100 mm	≤ 0,21
AW01	Außenwand WDVS	Wärmedämmung (MW/EPS) WLS 035	≥ 120 mm	≤ 0,26
	Außenwand	Holzständerwerk mit dazwischen	≥ 120 mm	
AW02	VHF	Wärmedämmung (MW) WLS 032 Holzfaserdämmstoff (WF) WLS 046	≥ 30 mm	≤ 0,25
DA01	Flachdach EG	Wärmedämmung (EPS) WLS 035 *	≥ 160 mm	≤ 0,21
DA02	Steildach DG	Zwischensparrendämmung (MW) WLS 035 Aufsparrendämmung (MF) WLS 046	≥ 220 mm ≥ 50 mm	≤ 0,17

^{*} Im Bereich der Tiefpunkte der Gefälledämmung ist eine Mindestdämmstoffdicke von ≥ 80 mm bei WLS 035 zu realisieren. Die angegebene Dicke bezeichnet die mittlere energetische Dicke der Wärmdämmung, im Entwurf (Schnitt) ist meist eine etwas größere mittlere Dicke der Dämmschicht (ca. 115 %) vorzusehen.


Tabelle 2. Kennwerte für Fassaden, Fenster und Türen.

Nr.	Bauteil	Kennwerte für Verglasung und Rahmen	<i>U</i> -Wert in W/m²K
FE01	Fenster	Dreischeibenverglasung $U_g \le 0.7 \text{ W/m}^2\text{K}$, thermisch getrennte Rahmen, $U_f \le 1.1 \text{ W/m}^2\text{K}$ Wärmeschutzverglasung $g \le 0.53$	≤ 0,95
FE02	Dachflächenfenster		≤ 1,00
T01	Türen UG zur Tiefgarage bzw. unb. Bereichen		≤ 1,60
T02	Außentüren		≤ 1,60

5.5 Sonstige Anmerkungen Wärmeschutz

Über die in Abschnitt 5.4 genannten Ausführungen zu den Bauteilen der thermischen Gebäudehülle hinaus sind folgende Anmerkungen zu berücksichtigen:

- Die Außenwand der Tiefgarage ist nicht zwingend zu dämmen, da es sich um einen unbeheizten Bereich handelt.
- Es ist allerdings zu empfehlen, die Decke über den auskragenden Bereichen UG zu EG mit einer Dämmung zur Vermeidung nächtlicher Abstrahlung und damit ggf. verbundener bauphysikalischer Probleme zu versehen (ca. 40 mm bis 60 mm WLS 040). Hier bietet sich ggf. die Ausführung als Umkehrdach an. Im Übergang zu den aufgehenden Fassaden des EG ist ohnehin eine Flankendämmung erforderlich.
- Für die Nebenräume in den Untergeschossen ist vorgesehen, diese nicht in die thermische Gebäudehülle zu integrieren. Auf Wärmedämm-Maßnahmen im Bereich der erdberührten Außenwände kann damit prinzipiell verzichtet werden.
 - Um das Risiko von Kondensatfeuchteschäden im Keller zu minimieren, wird dennoch eine Mindestdämmung der erdberührten Außenwände sowie der Wände zwischen Keller und Tiefgarage empfohlen. Hierdurch wird insbesondere auch weitestgehend das Risiko minimiert, dass Schäden im Bereich der Mieterkeller infolge von falscher Lagerung (nicht hinterlüftete Schränke im Außenwandbereich) auftreten. Wird auf die Dämmung verzichtet, ist ggf. eine optische Beeinträchtigung z. B. durch Schlierenbildung möglich.
- In die Dämmebene einbindende, massive Bauteile sind nach Möglichkeit zu vermeiden. Unvermeidbare einbindende Bauteile sind flankierend zu dämmen. Dies betrifft insbesondere Wände im UG, welche horizontal in die thermische Gebäudehülle einbinden (im Grundriss/Horizontalschnitt), sowie Wände und Stützen, die von unten in gedämmte Decken einbinden (im Vertikalschnitt). Die beschriebenen Situationen werden nachfolgend schematisch mit Schnittzeichnungen verdeutlicht.

Kragendämmung Vertikalschnitt

Flankendämmung Horizontalschnitt

Abbildung 3. Schnittzeichnungen Kragen- und Flankendämmung.

5.6 Vorabschätzung des Sommerlichen Wärmeschutzes

Auf der Grundlage der aktuellen Grundrisse [6] wurde die Vorprüfung des sommerlichen Wärmeschutzes nach dem Standardverfahren der DIN 4108-2 exemplarisch für sechs kritische Räume vorgenommen. Die Räume sind in den nachfolgenden Grundrissen farblich markiert.

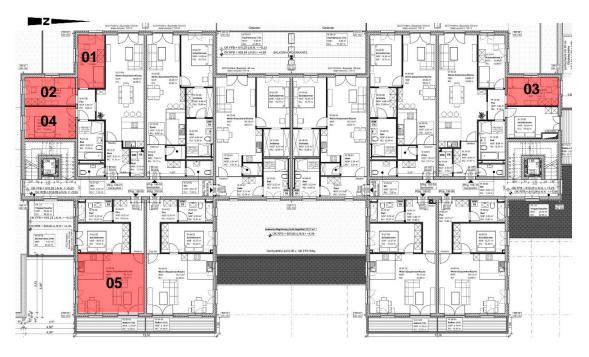


Abbildung 4. Grundriss 1. Obergeschoss mit kritischen Räumen.

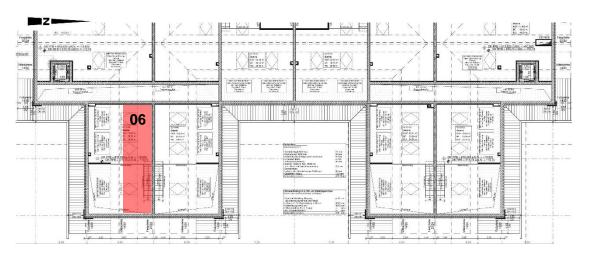


Abbildung 5. Grundriss Dachgeschoss mit kritischen Räumen.

Unter Berücksichtigung der folgenden Ansätze (und unter Zugrundelegung der aktuellen Raum- und Fensterflächen) werden die Anforderungen an den sommerlichen Wärmeschutz nach DIN 4108-2 erfüllt:

- Die untersuchten Räume werden in schwerer Bauart mit einer Wärmespeicherfähigkeit von $C_{wirk}/A_G > 130 \text{ Wh/(m}^2 \cdot \text{K})$ erstellt.
- Es wird eine Wärmeschutzverglasung mit einem Gesamtenergiedurchlassgrad der Verglasung von $g \le 53$ % an den Fenstern der Fassade sowie an den Dachflächenfenstern angesetzt.
- Für die Berechnungen wird aufgrund des Einkaufsmarktes angenommen, dass keine Möglichkeit zu einer erhöhten Nachtlüftung bspw. über gekippte Fenster an der Fassade besteht. In der Galerie im Dachgeschoss wird über die Dachflächenfenster eine erhöhte Nachtlüftung angesetzt.
- Geplante Sonnenschutzvorrichtungen:
 - An den Fenstern in den Wohnbereichen werden Fensterläden mit einem solaren Abminderungsfaktor von F_c ≤ 0,30 bei Wärmeschutzverglasung vorgesehen.
 - An den Dachflächenfenstern in den Wohnbereichen wird eine innenliegende Sonnenschutzvorrichtung mit einem solaren Abminderungsfaktor von F_c ≤ 0,80 bei Wärmeschutzverglasung vorgesehen.

Die Untersuchungsergebnisse sind in nachfolgender Tabelle dargestellt.

Tabelle 3. Sommerlicher Mindestwärmeschutz – vorhandene und zulässige Sonneneintragskennwerte für exemplarisch überprüfte Räume.

	Raum	Max. Sonneneintrags- kennwert - S _{zul} -	Vorhand. Sonneneintrags- kennwert - S -	Bewertung
01	1. OG - Whg. 100-01 Kinderzimmer 1	0,072	0,043	Anforderung erfüllt
02	1. OG - Whg. 100-01 Kinderzimmer 2	0,072	0,043	Anforderung erfüllt
03	1. OG - Whg. 100-10 Kinderzimmer 2	0,122	0,043	Anforderung erfüllt
04	1. OG - Whg. 100-01 Schlafzimmer	0,106	0,019	Anforderung erfüllt
05	1. OG - Whg. 100-05 Wohnen, Essen, Kochen	0,065	0,047	Anforderung erfüllt
06	DG - Whg. 200-15 Galerie mit Luftraum	0,099	0,074	Anforderung erfüllt

Die Untersuchungen zum sommerlichen Wärmeschutz wurden exemplarisch in thermisch "kritischen" Räumen vorgenommen. Kritische Räume sind solche, die einen hohen Fensterflächenanteil, eine geringe Grundfläche und Fenster mit Süd-, Ostoder Westausrichtung (bzw. Zwischenorientierungen) aufweisen.

Die Berechnungen zum sommerlichen Wärmeschutz wurden mit der Software Dämmwerk [7] durchgeführt und sind im Anhang B dargestellt.

6 Bauakustik

6.1 Bauakustischer Standard

6.1.1 Anforderungen an Trennbauteile zwischen fremden Nutzungseinheiten

Das maßgebliche Regelwerk ist die DIN 4109 "Schallschutz im Hochbau", welche in verschiedene Teile gegliedert ist [3]. Die in DIN 4109-1 dargestellten Mindestanforderungen sind für das Neubauvorhaben in jedem Fall einzuhalten.

Bezüglich des Schallschutzes innerhalb des Gebäudes wird in Abstimmung mit dem Bauherrn voraussichtlich ein erhöhter Standard angestrebt. Hierfür wird von Müller-BBM vorgeschlagen, die erhöhten Anforderungen der DIN 4109-5 als Planungsziel zu vereinbaren. Diese erhöhten Anforderungen beziehen sich auf die Trennbauteile zwischen den fremden Wohneinheiten bzw. auf die Trennbauteile zwischen Nichtwohn- und Wohnbereichen.

Für Nichtwohnbereiche sind in der Normenreihe DIN 4109 "Schallschutz im Hochbau" keine erhöhten schalltechnischen Anforderungen vorgesehen, hier gelten weiterhin die Mindestanforderungen gemäß DIN 4109-1.

Der jeweils genannte Standard ist mit der geplanten Bauweise und den vorgesehenen Grundrissen i. d. R. zu realisieren.

In der nachfolgenden Tabelle 4 sind die Mindestanforderungen an den Schallschutz von Trennbauteilen gemäß DIN 4109-1 den Empfehlungen an einen erhöhten Schallschutz gemäß DIN 4109-5 gegenübergestellt.

Tabelle 4. Anforderung an den Mindestschallschutz in Mehrfamilienhäusern nach DIN 4109 Teil 1 und den erhöhten Schallschutz gemäß DIN 4109 Teil 5.

Bauteil	Mindestanforderungen DIN 4109-1:2018-01		erhöhter Schallschutz DIN 4109-5:2020-05		
	erf. R' _w erf. L' _{n,w} in dB in dB		erf. R' _w in dB	erf. <i>L'</i> n,w in dB	
Decken und Fußböden					
Wohnungstrenndecken (auch Treppen)	≥ 54	≤ 50	≥ 57	≤ 45	
Trenndecken (auch Treppen) zwischen fremden Arbeitsräumen bzw. vergleichbaren Nutzungs- einheiten	≥ 54	≤ 53	-	-	
Decken über Kellern, Hausfluren, Treppenräumen unter Aufent- haltsräumen	≥ 52	≤ 50 ^{a)}	≥ 55	≤ 45 ^{a)}	

Bauteil		Mindestanforderungen DIN 4109-1:2018-01		challschutz -5:2020-05
	erf. R' _w in dB	erf. <i>L'</i> _{n,w} in dB	erf. R' _w in dB	erf. <i>L'</i> n,w in dB
Decken über Durchfahrten, Einfahrten von Sammelgaragen unter Aufenthaltsräumen	≥ 55	≤ 50 ^{a)}	≥ 57	≤ 45 ^{a)}
Decken unter Terrassen und Loggien über Aufenthaltsräumen	-	≤ 50	-	≤ 45
Balkone	-	≤ 58 ^{a)}	-	≤ 58 a) d)
Decken unter Bad und WC ohne/mit Bodenentwässerung	≥ 54	≤ 53 ^{a)}	≥ 57	≤ 47 ^{a)}
Decken unter Hausfluren	-	≤ 50 ^{a)}	-	≤ 45 ^{a)}
Treppen				
Treppenläufe und -podeste	-	≤ 53	-	≤ 47
Wände				
Wohnungstrennwände und Wände zwischen fremden Arbeitsräumen	≥ 53	-	≥ 56	-
Treppenraumwände und Wände neben Hausfluren	≥ 53 ^{b)}	-	≥ 56 ^{b)}	-
Wände neben Durchfahrten, Sammelgarage, einschließlich Einfahrten	≥ 55	-	≥ 55 ^{d)}	-
Schachtwände von Aufzugs- anlagen an Aufenthaltsräume	≥ 57	-	≥ 57 ^{d)}	-
Türen				
Türen, die von Hausfluren oder Treppenräumen in geschlossene Flure und Dielen von Wohnungen und Wohnheimen oder von Arbeitsräumen führen	≥ 27 °)	-	≥ 32 °)	-
Türen, die von Hausfluren oder Treppenräumen unmittelbar in Aufenthaltsräume – außer Flure und Dielen – von Wohnungen führen	≥ 37 °)	-	≥ 42 ^{c) e)}	-

- Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.
- b) Für Wände mit Türen gilt die Anforderung R'_w (Wand) = R_w (Tür) + 15 dB. Darin bedeutet R_w (Tür) die erforderliche Schalldämmung der Tür. Wandbreiten ≤ 30 cm bleiben dabei unberücksichtigt.
- c) Bei Türen gilt das bewertete Schalldämm-Maß erf. Rw.
- d) Entspricht der Mindestanforderung gemäß DIN 4109-1.
- e) Die Anforderung beträgt ≥ 40 dB unter der Voraussetzung, dass durch gleichwertige schallschutztechnische Maßnahmen, wie Schallschleusen, offene Dielen im Eingangsbereich, der Schallschutz zwischen Treppenraum und Aufenthaltsraum verbessert wird.

Dabei bedeutet:

R'w: das bewertete Schalldämm-Maß zwischen Raumbereichen unter Berücksichtigung aller an der Schallübertragung beteiligten Bauteile und Nebenwege; je größer der Wert, desto höher ist die Schalldämmung

R_w: bewertetes Schalldämm-Maß in dB <u>ohne</u> Schallübertragung über flankierende Bauteile, Einzahlangabe zur Kennzeichnung der Luftschalldämmung von Türen

L'_{n,w}: der bewertete Norm-Trittschallpegel zur Kennzeichnung der Trittschallübertragung; je kleiner der Wert, desto höher ist die Trittschalldämmung

6.1.2 Anforderungen an Geräusche aus gebäudetechnischen Anlagen

Zu den gebäudetechnischen Anlagen zählen neben der Wasserinstallation und Aufzugsanlage die zum zugesagten Betrieb des Gebäudes erforderlichen technischen Einrichtungen.

In der nachfolgenden Tabelle 5 sind die nach DIN 4109 für den Mindestschallschutz und den erhöhten Schallschutz maximal zulässigen Schalldruckpegel von Geräuschen aus gebäudetechnischen Anlagen, die in den angrenzenden fremden schutzbedürftigen Räumen auftreten dürfen, angegeben.

Tabelle 5. Max. zulässiger A-bewerteter Schalldruckpegel in fremden schutzbedürftigen Räumen, erzeugt von gebäudetechnischen Anlagen.

	Mindestanforderung DIN 4109-1 LAF.max.n in dB(A)		erhöhter Schallschutz DIN 4109-5 LAF,max,n in dB(A)	
	Wohn- und Schlafräume Arbeitsräume		Wohn- und Schlafräume	Arbeitsräume
Sanitärtechnik (Wasserversorgungs- und Abwasseranlagen gemeinsam)	≤ 30 ^{a) b)}	≤ 35 ^{a) b)}	≤ 27 ^{a) b)}	_ c)
Sonstige hausinterne, fest installierte technische Schallquellen der techn. Ausrüstung, Ver- und Entsorgung sowie Garagenanlagen	≤ 30	≤ 35	≤ 27	_ c)

- a) Einzelne kurzzeitige Spitzen, die beim Betätigen der Armaturen und Geräte (Öffnen, Schließen, Umstellen, Unterbrechen u. a.) entstehen, sind z. Z. nicht zu berücksichtigen.
- b) Voraussetzungen zur Erfüllung des zulässigen Schalldruckpegels:
 - die Ausführungsunterlagen müssen die Anforderungen des Schallschutzes berücksichtigen, d. h., zu den Bauteilen müssen die erforderlichen Schallschutznachweise vorliegen;
 - außerdem muss die verantwortliche Bauleitung benannt und zu einer Teilnahme vor Verschließen bzw. Bekleiden der Installation hinzugezogen werden.
- c) Für Arbeitsräume sind keine erhöhten Anforderungen definiert.

6.1.3 Schalltechnische Wahrnehmbarkeit

In der nachfolgenden Tabelle sind die unterschiedlichen schalltechnischen Standards und deren empirische Wahrnehmung dargestellt.

Tabelle 6. Beschreibung der subjektiven Wahrnehmbarkeit üblicher Geräusche bei Schallschutz entsprechend DIN 4109-1 (Mindestschallschutz) und der DIN 4109-5 (Erhöhter Schallschutz) zwischen Wohneinheiten in Mehrfamilienhäusern.

		Wahrnehmbarkeit			
Art des Geräuschs	Beschreibung bzw. Beispiele	(Grundgeräuschpegel von 25 dB, Aufenthaltsräume mit üblicher Größe und Ausstattung)			
		DIN 4109-1	DIN 4109-5		
Normale Sprache	ruhige Unterhaltung	nicht verstehbar, kaum hörbar	nicht verstehbar, nicht hörbar		
Angehobene Sprache	angeregte Unterhaltung mehrerer Personen	im Allgemeinen nicht verstehbar, noch hörbar	nicht verstehbar, kaum hörbar		
Normale Musik	leises Musizieren, Lautsprecheranlage	gut hörbar	hörbar		
Gehgeräusche	bei üblichem Gehen ohne Fersengang	hörbar	noch hörbar		
aus gebäudetech- nischen Anlagen	Aufzuggeräusche, automatisch schließende Türen und Tore, Türöffner, Hebeanlagen, Heizungs- und Lüftungsanlagen	hörbar	noch hörbar		
aus Sanitärtechnik / Wasserinstallationen	übliche Benutzung von Dusche, WC- Spülung	hörbar	noch hörbar		
aus Betätigungs- spitzen	kurzzeitige Pegelspitzen beim Betätigen von WC-Spülung, Öffnen / Schließen von Wasserarmaturen	gut hörbar	hörbar		
Nutzergeräusche	übliches Ablegen von Gegenständen auf Ablagen oder sanitären Ausstattungsgegenständen, manuelle Rollladenbetätigung	gut hörbar ^a	hörbar ^a		
von Haushalts- geräten	Staubsauger, Mixer, Haartrockner, Waschmaschine	gut hörbar ^a	hörbar ^a		

Anmerkung: Laute Sprache (z. B. Streit, Party), laute Musik (z. B. Musizieren, laute Lautsprecheranlagen) oder spielende Kinder (z. B. tobende, hüpfende, trampelnde) können unabhängig vom Schallschutzniveau nach DIN 4109-1 oder DIN 4109-5 in der Nachbarwohnung deutlich wahrgenommen bzw. teilweise verstanden werden.

a Sowohl Nutzergeräusche als auch Geräusche von Haushaltsgeräten unterliegen starken Schwankungen, abhängig vom Gerät und vom Nutzungsverhalten. Dies kann zu einer abweichenden Wahrnehmbarkeit dieser Geräusche führen.

6.1.4 Anforderungen an raumlufttechnische Anlagen im eigenen Wohnbereich

Bei den im eigenen Wohnbereich fest installierten technischen Schallquellen, die (bei bestimmungsgemäßem Betrieb) nicht vom Bewohner selbst betätigt bzw. in Betrieb gesetzt werden können, sind die gemäß DIN 4109 [3] in Tabelle 7 genannten Anforderungen einzuhalten.

Tabelle 7. Max. zulässige *A*-bewertete Schalldruckpegel in schutzbedürftigen Räumen in der eigenen Wohnung, erzeugt von raumlufttechnischen Anlagen im eigenen Wohnbereich.

Geräuschquelle	Maximal zulässige Schalldruckpegel LAF,max,n			
	Mindestanforderungen Teil 1	Erhöhte Anforderungen Teil 5		
Fest installierte technische Schall- quellen der Raumlufttechnik im eigenen Wohn- und Arbeitsbereich	Wohn- und Schlafräume: ≤ 30 dB(A) ^{a) b) c)} Küchen: ≤ 33 dB(A) ^{a) b) c)}	Wohn- und Schlafräume: ≤ 27 dB(A) ^{a) b) d) e)} 		

- a) Einzelne, kurzzeitige Geräuschspitzen, die beim Ein- und Ausschalten der Anlagen auftreten, dürfen maximal 5 dB überschreiten.
- b) Werkvertragliche Voraussetzungen zur Erfüllung des Schalldruckpegels:
 - die Ausführungsunterlagen müssen die Anforderungen des Schallschutzes berücksichtigen, d. h. zu den Bauteilen müssen die erforderlichen Schallschutznachweise vorliegen;
 - außerdem muss die verantwortliche Bauleitung benannt und zu einer Teilabnahme vor Verschließen bzw. Bekleiden der Installation hinzugezogen werden.
- Es sind um 5 dB(A) höhere Werte zulässig, sofern es sich um Dauergeräusche ohne auffällige Einzeltöne handelt.
- d) Es sind um 3 dB(A) höhere Werte zulässig, sofern es sich um Dauergeräusche ohne auffällige Einzeltöne handelt.
- e) Die Anforderung gilt nachts bei erforderlichem Luftvolumenstrom für die jeweilige lüftungstechnische Maßnahme nach DIN 1946-6; beispielsweise 15 m³/h je Person für Schlafzimmer.

Für den erforderlichen hygienischen Luftwechsel (Grundstufe des Geräts) sollten deutlich geringere Pegel angestrebt werden, um die Akzeptanz zu steigern. Nach Möglichkeit sollte der zu erwartende Grundgeräuschpegel in Schlaf- und Kinderzimmern bei geschlossenem Fenster nachts unterschritten werden $(L_{AF,max,n} \le 20...23 \text{ dB(A)})$.

Nach derzeitigem Kenntnisstand sind in Hinblick auf die Fußnote e) für den erhöhten Schallschutz mit dem geplanten Lüftungskonzept (motorisch betriebene Fassaden-lüfter mit Wärmerückgewinnung) weder planungssicher die Mindestanforderungen noch die erhöhten Anforderungen bezogen auf einen erforderlichem Luftvolumenstrom für die jeweilige lüftungstechnische Maßnahme nach DIN 1946-6; beispielsweise 15 m³/h je Person für Schlafzimmer einhaltbar.

Insbesondere bei Bädern, welche einen direkten Zugang zu einem Schlafraum aufweisen, ist aufgrund der geringen Schalldämmung der Türe mit Unterschnitt zum Bad ein besonders leiser Lüfter erforderlich. Im Bad muss ein Schalldruckpegel von $L_{AF,max} < 45 \text{ dB}(A)$ eingehalten werden.

6.1.5 Anforderungen zwischen "besonders lauten" und schutzbedürftigen Räumen

Der im EG vorgesehene Einkaufsmarkt ist im Sinne der DIN 4109-1 als laute Nutzung anzusehen. In der Folge bestehen erhöhte Anforderungen an den Luft- und Trittschallschutz der relevanten trennenden Bauteile.

"Besonders laute" Räume sind

- Räume, in denen Schalldruckpegel des Luftschalls häufig *L*_{AF,max} ≥ 75 dB(A) betragen,
- Räume in denen häufigere und größere Körperschallanregungen (z. B. durch Maschinen) stattfinden als in Wohnungen.

Für Trennbauteile zwischen "besonders lauten" und schutzbedürftigen Räumen sind mindestens die in der nachfolgenden Tabelle 8 genannten Anforderungen einzuhalten.

Tabelle 8. Anforderungen an die Luft- und Trittschalldämmung von Bauteilen zwischen "besonders lauten" und schutzbedürftigen Räumen.

		Bewertetes Sch	Bewerteter Norm-	
Art der Räume	Bauteile Schalldruckpegel LAF,max in dB(A)			
		75 – 80	81 – 85	<i>L'</i> _{n,w} in dB
Räume mit "besonders lauten" gebäudetechnischen Anlagen	Decken, Wände	≥ 57	≥ 62	-
oder Anlageteilen	Fußböden	-		≤ 43 ^{a)}
Betriebsräume von Handwerks- und Gewerbebetrieben,	Decken, Wände	≥ 57	≥ 62	-
Verkaufsstätten	Fußböden	-		≤ 43
Gasträume L _{AF,max} ≤ 85 dB (auch nach 22:00 Uhr in	Decken, Wände	≥ 62		
Betrieb)	Fußböden			≤ 33

Nicht erforderlich, wenn geräuscherzeugende Anlagen ausreichend k\u00f6rperschallged\u00e4mmt aufgestellt werden.

Für die Trennbauteile zwischen dem Einkaufsmarkt und den darüberliegenden Wohnungen wird empfohlen die folgenden Anforderungen zu Grunde zu legen.

- Trenndecken und Trennwände "lautes Gewerbe" R'_w ≥ 62 dB; L'_{n,w} ≤ 33 dB

Die genannten Anforderungen werden einer erhöhten Körperschalleinwirkung durch Geräte z. B. Hubwagen und einer Geräuscheinwirkung während der Nachtzeit z. B. vor 06:00 Uhr im Einkaufsmarkt zum Schutz der darüber liegenden Wohnungen gerecht.

6.2 Trennbauteile zwischen fremden Nutzungseinheiten

Nachfolgend werden die relevanten Konstruktionen, welche den Planunterlagen entnommen werden können bzw. aus schalltechnischer Sicht erforderlich sind, aufgeführt.

- Die Wohnungstrenn- und Treppenhauswände sind aus ≥ 250 mm Stahlbeton geplant. Schalltechnisch wären vrs. 220 mm Stahlbeton ausreichend.
- Trenndecke UG zu EG aus ≥ 350 mm Stahlbeton mit schwimmendem Estrichaufbau und Trittschalldämmung mit s' ≤ 40 MN/m³.
- Trenndecke Einkaufsmarkt zu Wohnen aus ≥ 300 mm Stahlbeton mit schwimmendem Estrichaufbau und Trittschalldämmung mit s' ≤ 20 MN/m³.
- Trenndecke Wohnen zu Wohnen aus ≥ 220 mm Stahlbeton mit schwimmendem Estrichaufbau und Trittschalldämmung mit s' ≤ 20 MN/m³.
- Außenwände mit 250 mm Stahlbeton und WDVS bzw. vorgehängter Fassade.
- Innenwände Gewerbe vrs. aus Mauerwerk bzw. Trockenbau.
- Innenwände Wohnbereich Trockenbau bzw. 175 mm Mauerwerk oder Stahlbeton.
- Aufzugsschacht in das Treppenhaus integriert mit 250 mm Beton.
- Aufzugsschacht angrenzend an schutzbedürftige Räume mit 280 mm Beton und Vorsatzschale.

Hinweis: In der aktuellen Planung weisen die schutzbedürftigen Räume, welche im Dachgeschoss direkt an den Aufzugsschacht grenzen, ein Volumen über 62,5 m³ auf. Um die Anforderungen der DIN 8989 einhalten zu können, ist hierfür eine 280 mm anstatt 250 mm dicke Stahlbetonwand mit Vorsatzschale notwendig.

Die o. g. Bauteilabmessungen bieten eine gute Grundlage, die Anforderungen an einen erhöhten Schallschutz gemäß DIN 4109-5 hinsichtlich der Trennbauteile zwischen fremden Nutzungen und Wohnungen sowie den Mindestschallschutz gemäß DIN 4109-1 hinsichtlich der Trennbauteile zwischen fremden Nutzungen und den Gewerbeflächen einzuhalten.

Ergänzend sind die nachfolgenden Anmerkungen zu berücksichtigen:

- Die Wohnungseingangstüren führen in allen Nutzungseinheiten in abgeschlossene Dielen. Dies ist aus schalltechnischer Sicht als günstig zu bewerten. Für diesen Fall werden Türen mit R_w = 32 dB empfohlen (Prüfzeugniswert R_{w,P} ≥ 37 dB).
- Es wird empfohlen, häufig begangene Gemeinschaftsflächen, wie das Treppenhaus und die Schleuse im Untergeschoss, mit einem schwimmenden Fußbodenaufbau zu versehen.
- Für Dachterrassen bzw. Loggien unmittelbar über Aufenthaltsräumen sind trittschallmindernde Maßnahmen vorzusehen, z. B. in Form einer Bautenschutzmatte mit trittschalldämmenden Eigenschaften, z. B. aus Gummigranulat (Regupol Sound and Drain o. glw.).
- Auch im Erdgeschoss sowie im Warenlager im UG ist zwingend eine hochwertige Trittschalldämmung erforderlich, um die Schallübertragung z. B. aus Hubfahrzeugen in die darüberliegenden Wohnungen zu unterbinden. Die Dämmung und der Aufbau sind je nach Anforderungen an die Last in Zusammenarbeit mit der Statik abzustimmen.

6.3 Bauakustische Empfehlungen im eigenen Wohn- oder Arbeitsbereich

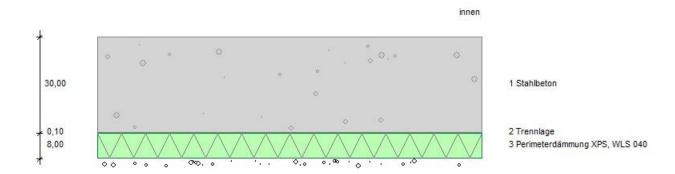
Die DIN 4109-1 bzw. DIN 4109-5 enthält im Wesentlichen die oben dargestellten Anforderungen an die Trennbauteile zwischen fremden Nutzungseinheiten bzw. an die Geräusche aus gebäudetechnischen Anlagen. Empfehlungen für den eigenen Wohn- oder Arbeitsbereich werden jedoch nicht genannt.

Um dennoch innerhalb der verschiedenen Nutzungseinheiten einen angemessenen schalltechnischen Standard umzusetzen (z. B. zwischen Wohn- und Schlafzimmer innerhalb einer Wohnung), kann auf die zahlenmäßigen Empfehlungen des Beiblatts 2 zur DIN 4109:1989 [4] zurückgegriffen werden. Die konkreten Empfehlungen werden im Zuge der weiteren Planung näher beschrieben.

M. Eng. Thea Hirle

M. Sc. Wolfgang Schnell

w. sul


Anhang A

Bauteilaufbauten

Anhang A: Bauteilaufbauten

Projekt M157668 Josefstaler Straße Schliersee

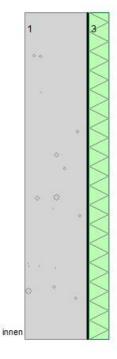
Bauteil: G01 - Bodenplatte UG gegen Erdreich

G01 - Bodenplatte UG gegen Erdreich U = 0,43 W/(m²K)

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi					0,170
01 Stahlbeton	300,0	2300	690,0	2,300	0,130
02 Trennlage	1,0	_	-	-	_
03 Perimeterdämmung XPS, WLS 040	80,0	25	2,0	0,040	2,000
R _{se}					0,000
d =	= 381,0	G =	692,0	RT	= 2,30

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,435 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Sohlplatten, unmittelbar an das Erdreich grenzend bis zu einer Raumtiefe von 5 m (DIN 4108-2:2013. Mindestanforderungen nach Tab.3.

R $2,13 \ge 0,90 \text{ m}^2\text{K/W}$ erfüllt die Anforderungen

Bauteil: G02 - Außenwand UG gegen Erdreich

G02 - Außenwand UG gegen Erdreich U = 0,45 W/(m²K)

von innen 1 Stahlbeton 2 Trennlage

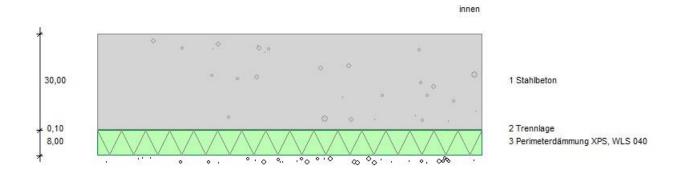
3 Perimeterdämmung XPS, WLS 040

25,00 8,00

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi 01 Stahlbeton 02 Trennlage 03 Perimeterdämmung XPS, WLS 040 Rse	250,0 1,0 80,0	2300 - 25	575,0 - 2,0	2,300 - 0,040	0,130 0,109 - 2,000 0,000
d =	331,0	G =	577,0	R _T	= 2,24

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,447 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Außenwand gegen Erdreich. Mindestanforderungen nach Tab.3.

R 2,11 \geq 1,20 m²K/W erfüllt die Anforderungen

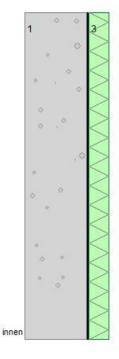
Bauteil: G03 - Bodenplatte Aufzugsunterfahrt gegen Erdreich

G03 - Bodenplatte Aufzugsunterfahrt gegen Erdreich U = 0,43 W/(m²K)

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{Si}					0,170
01 Stahlbeton	300,0	2300	690,0	2,300	0,130
02 Trennlage	1,0	_	_	_	_
03 Perimeterdämmung XPS, WLS 040	80,0	25	2,0	0,040	2,000
Rse					0,000
d :	= 381,0	G =	692,0	 Rт	= 2,30

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,435 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Sohlplatten, unmittelbar an das Erdreich grenzend bis zu einer Raumtiefe von 5 m (DIN 4108-2:2013. Mindestanforderungen nach Tab.3.

R 2,13 ≥ 0,90 m²K/W erfüllt die Anforderungen

Bauteil: G04 - Außenwand Aufzug gegen Erdreich

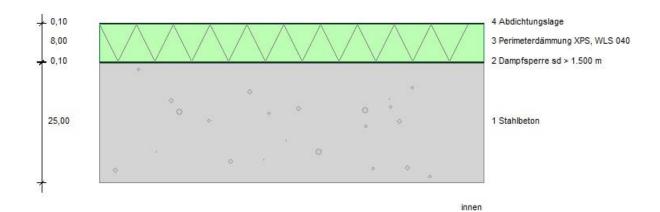
G04 - Außenwand Aufzug gegen Erdreich U = 0,45 W/(m²K)

von innen 1 Stahlbeton 2 Trennlage 3 Perimeterdämmung XPS, WLS 040

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi 01 Stahlbeton 02 Trennlage 03 Perimeterdämmung XPS, WLS 040 Rse	250,0 1,0 80,0	2300 - 25	575,0 - 2,0	2,300 - 0,040	0,130 0,109 - 2,000 0,000
d =	331,0	G =	577,0	RT	= 2,24

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,447 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Außenwand gegen Erdreich. Mindestanforderungen nach Tab.3.

R $2,11 \ge 1,20$ m²K/W erfüllt die Anforderungen

Bauteil: G05 - Decke UG nach oben gegen Erdreich

G05 - Decke UG nach oben gegen Erdreich U = 0,44 W/(m²K)

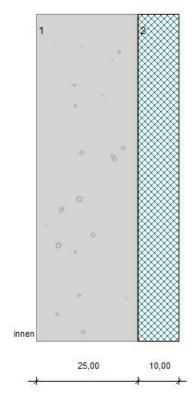
Quarechnitt

t

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{si}					0,100
01 Stahlbeton	250,0	2300	575,0	2,300	0,109
02 Dampfsperre sd > 1.500 m	1,0	-	_	-	_
03 Perimeterdämmung XPS, WLS 040	80,0	25	2,0	0,040	2,000
04 Abdichtungslage	1,0	_	_	_	_
R _{se}					0,040
d :	= 332,0	G =	577,0	RT	= 2,25

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient U = 0,445 W/(m²K) (ohne Korrekturen)


.....

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Decken beheizter Räume nach oben gegen Außenluft (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

R $2,11 \ge 1,20$ m²K/W erfüllt die Anforderungen

Bauteil: IW01 - Trennwand zu Tiefgarage

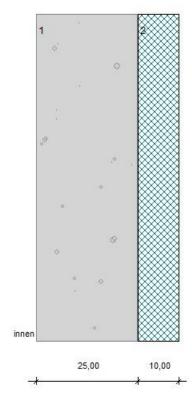
IW01 - Trennwand zu Tiefgarage $U = 0.34 \text{ W/(m}^2\text{K)}$

von innen 1 Stahlbeton 2 Mehrschichtplatte WWC, R > 2,7

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi 01 Stahlbeton 02 Mehrschichtplatte WWC, R > 2,7 Rse	250,0 100,0	2300	575,0 5,0	2,300	0,130 0,109 2,700 0,040
d =	350,0	G =	580,0	RT	= 2,98

..... Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,336 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Wände beheizter Räume gegen Außenluft, Erdreich, Tiefgaragen (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

2,81 ≥ 1,20 m²K/W erfüllt die Anforderungen R

Bauteil: IW02 - Trennwand zu unbeheizten Kellerräumen

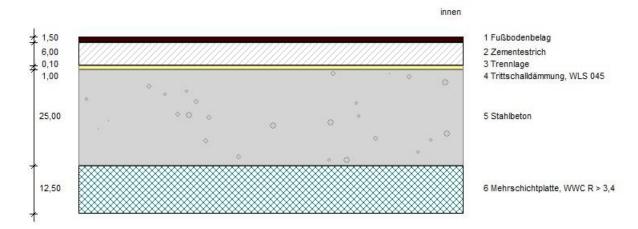
IW02 - Trennwand zu unbeheizten Kellerräumen U = 0,33 W/(m²K)

von innen 1 Stahlbeton 2 Mehrschichtplatte WWC, R > 2,7

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi					0,130
01 Stahlbeton	250,0	2300	575,0	2,300	0,109
02 Mehrschichtplatte WWC, R > 2,7	100,0	50	5,0	-	2,700
R _{se}					0,130
d =	350.0	G =	580.0	Rm	= 3.07

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,326 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Wände beheizter Räume zu nicht beheizten Räume (auch nicht beheizten Dach- oder Kellerräumen) (DIN 4108-2:2013. Mindestanforderungen nach Tab.3.

R 2,81 \geq 1,20 m²K/W erfüllt die Anforderungen

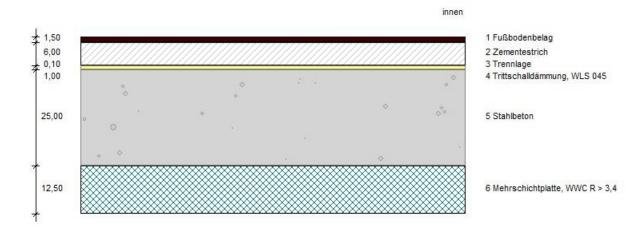
Bauteil: DE01 - Decke zu Tiefgarage

DE01 - Decke zu Tiefgarage U = 0,25 W/(m²K)

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi					0,170
01 Fußbodenbelag	15,0	-	-	-	_
02 Zementestrich	60,0	2000	120,0	1,400	0,043
03 Trennlage	1,0	-	-	-	-
04 Trittschalldämmung, WLS 045	10,0	_	_	0,045	0,222
05 Stahlbeton	250,0	2300	575 , 0	2,300	0,109
06 Mehrschichtplatte, WWC R > 3,4	125,0	115	14,4	_	3,400
R _{Se}					0,040
d =	461 0	G =	709 4	Rm	= 3 98

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient U = 0,251 W/(m²K) (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Decken gegen Außenluft, Garagen (auch beheizte), Durchfahrten und belüftete Kriechkeller (DIN 4108-2:2013. Mindestanforderungen nach Tab.3.

R 3,77 \geq 1,75 m²K/W erfüllt die Anforderungen

Bauteil: DE02 - Decke zu unbeheizten Kellerräumen

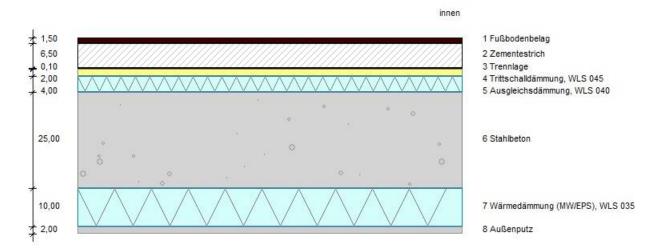
DE02 - Decke zu unbeheizten Kellerräumen U = 0,24 W/(m²K)

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi					0,170
01 Fußbodenbelag	15,0	-	-	_	_
02 Zementestrich	60,0	2000	120,0	1,400	0,043
03 Trennlage	1,0	-	-	_	_
04 Trittschalldämmung, WLS 045	10,0	-	_	0,045	0,222
05 Stahlbeton	250,0	2300	575 , 0	2,300	0,109
06 Mehrschichtplatte, WWC R > 3,4	125,0	115	14,4	-	3,400
R _{se}					0,170
d =	= 461,0	G =	709,4	RT	= 4,11

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient U = 0,243 W/(m²K) (ohne Korrekturen)


Mindortworte für Wärmedureblesswideretände nach DIN 4109 2

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Decken gegen nicht beheizten Kellerraum (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

R 3,77 \geq 0,90 m²K/W erfüllt die Anforderungen

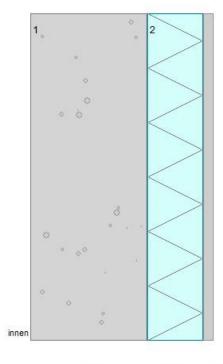
Bauteil: DE03 - Decke nach unten gegen Außenluft 1.OG

DE03 - Decke nach unten gegen Außenluft 1.OG $U = 0.21 \text{ W/(m}^2\text{K})$

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{si}					0,170
01 Fußbodenbelag	15,0	_	_	_	_
02 Zementestrich	65,0	2000	130,0	1,400	0,046
03 Trennlage	1,0	-	_	_	_
04 Trittschalldämmung, WLS 045	20,0	-	_	0,045	0,444
05 Ausgleichsdämmung, WLS 040	40,0	20	0,8	0,040	1,000
06 Stahlbeton	250,0	2300	575 , 0	2,300	0,109
07 Wärmedämmung (MW/EPS), WLS 035	100,0	20	2,0	0,035	2 , 857
08 Außenputz	20,0	1800	36,0	1,000	0,020
Rse					0,040
d =	511,0	G =	743,8	RT	= 4,69

Wärmedurchgangskoeffizient


Wärmedurchgangskoeffizient $U = 0,213 \text{ W/(m}^2\text{K)}$ (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Decken gegen Außenluft, Garagen (auch beheizte), Durchfahrten und belüftete Kriechkeller (DIN 4108-2:2013. Mindestanforderungen nach Tab.3.

R 4,48 ≥ 1,75 m²K/W erfüllt die Anforderungen

Bauteil: AW01 - Außenwand WDVS

25,00

AW01 - Außenwand WDVS U = 0,27 W/(m²K)

von innen

- 1 Stahlbeton
- 2 Wärmedämmung MW/EPS, WLS 035
- 3 Außenputz

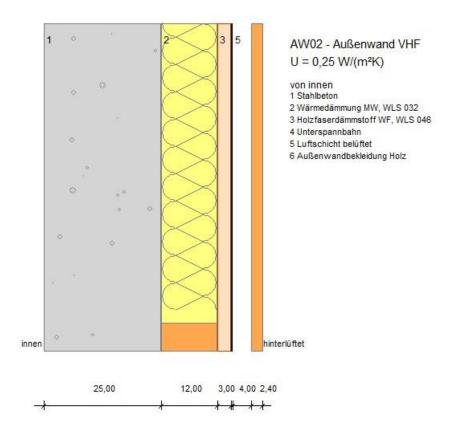
Querschnitt

von innen		s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{si}						0,130
01 Stahlbeton		250,0	2300	575 , 0	2,300	0,109
02 Wärmedämmung MW/EPS, WLS 035		120,0	20	2,4	0,035	3,429
03 Außenputz		20,0	1800	36,0	1,000	0,020
R _{se}						0,040
	d =	390,0	G =	613,4	RT	= 3,73

12,00 2,00

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient U = 0,268 W/(m²K) (ohne Korrekturen)


Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Wände beheizter Räume gegen Außenluft, Erdreich, Tiefgaragen (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

R 3,56 ≥ 1,20 m²K/W erfüllt die Anforderungen

HIRL

Bauteil: AW02 - Außenwand VHF

Querschnitt

von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi					0,130
01 Stahlbeton	250,0	2300	575 , 0	2,300	0,109
02 Wärmedämmung MW, WLS 032	120,0	30	3,6	0,032	3 , 750
03 Holzfaserdämmstoff WF, WLS 046	30,0	160	4,8	0,046	0,652
04 Unterspannbahn	0,2	_	_	_	_
05 Luftschicht belüftet	40,0	_	_	_	_
06 Außenwandbekleidung Holz	24,0	_	_	_	_
R _{se}					0,130
d =	464,2	G =	583,4	RT	= 4,77

 $U_{Gefach} = 0.210 \text{ W/(m}^2\text{K)}$

HIRL

Rahmenbereich

Rahmenbreite Achsabstand	zusammengesetztes Bauteil
--------------------------	---------------------------

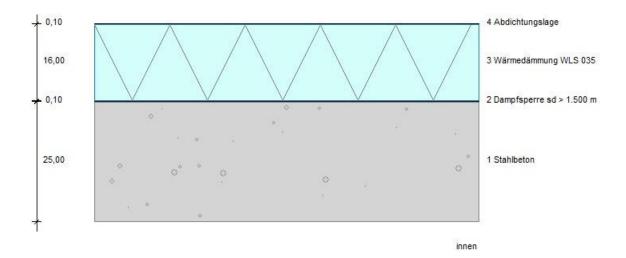
	6,0 cm	62,5 cm	9,6 %		590,	0 kg/m²		
	Rahmenanteil vo	on innen		s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
	Rsi							0,130
01	Stahlbeton			250,0	2300	575,0	2,300	0,109
02	Holz			120,0	600	72,0	0,130	0,923
03	Holzfaserdämmst	off WF, WLS C	146	30,0	160	4,8	0,046	0,652
04	Unterspannbahn			0,2	_	_	-	_
05	Luftschicht bel	Lüftet		40,0	_	_	_	_
06	Außenwandbeklei	idung Holz		24,0	_	_	_	_
	Rse							0,130
				464,2		651,8	RT	= 1,94

 $U_{(R)} = 0.514 \text{ W/(m}^2\text{K)}$

 $\begin{array}{ll} R^{'}_{T} &= 1 \, / \, (90,40\% \, ^* \, 1/4,771 \, + \, 9,60\% \, ^* \, 1/1,944) = 4,19 \, \text{m}^2\text{K/W} \\ R^{''}_{T} &= 0,13 \, + \, 1/(0,904/0,109 + 0,096/0,109) \, + \, 1/(0,904/3,750 + 0,096/0,923) \, + \\ 1/(0,904/0,652 + 0,096/0,652) \, + \, 0,13 \, = \, 3,92 \, \text{m}^2\text{K/W} \\ R_{T} &= (R^{'}_{T} + R^{''}_{T})/2 \, = \, 4,05 \, \text{m}^2\text{K/W} \, \left(\text{maximaler Fehler} \, = \, R^{'}_{T} \, - \, R^{''}_{T} \, / \, 2 \, ^* \, R_{T} \, = \, \, 3 \, \% \right) \end{array}$

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient $U = 0,247 \text{ W/(m}^2\text{K)}$ (ohne Korrekturen)


.....

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Wände beheizter Räume gegen Außenluft, Erdreich, Tiefgaragen (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

 $R_{(G)}$ 4,51 \geq 1,75 m^2K/W erfüllt die Anforderungen R 3,79 \geq 1,00 m^2K/W erfüllt die Anforderungen

Bauteil: DA01 - Flachdach EG

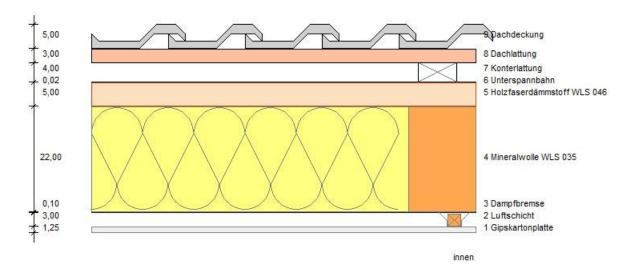
DA01 - Flachdach EG U = 0,21 W/(m²K)

Querschnitt

von innen		s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{si}						0,100
01 Stahlbeton		250,0	2300	575 , 0	2,300	0,109
02 Dampfsperre sd > 1.500 m		1,0	_	-	-	-
03 Wärmedämmung WLS 035		160,0	20	3,2	0,035	4,571
04 Abdichtungslage		1,0	-		_	-
R _{se}						0,040
	d =	412,0	G =	578,2	RT	= 4,82

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient U = **0,207 W/(m²K)** (ohne Korrekturen)


Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Decken beheizter Räume nach oben gegen Außenluft (DIN 4108-2:2013). Mindestanforderungen nach Tab.3.

R 4,68 \geq 1,20 m² K/W erfüllt die Anforderungen

Im Bereich der Tiefpunkte der Gefälledämmung ist eine Mindestdämmstoffdicke von = 80 mm bei WLS 035 zu realisieren. Die angegebene Dicke bezeichnet die mittlere energetische Dicke der Wärmdämmung, im Entwurf (Schnitt) ist meist eine etwas größere mittlere Dicke der Dämmschicht (ca. 115 %) vorzusehen.

Bauteil: DA02 - Steildach

DA02 - Steildach U = 0,17 W/(m²K)

Querschnitt

von innen		s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
Rsi						0,100
01 Gipskartonplatte		12,5	800	10,0	0,250	0,050
02 Luftschicht		30,0	1	0,0	_	0,160
03 Dampfbremse		1,0	-	_	_	_
04 Mineralwolle WLS 035		220,0	20	4,4	0,035	6,286
05 Holzfaserdämmstoff WLS 046		50,0	160	8,0	0,046	1,087
06 Unterspannbahn		0,2	_	_	_	_
07 Konterlattung		40,0	-	_	-	-
08 Dachlattung		30,0	-	-	_	_
09 Dachdeckung		50,0	_	_	_	_
R _{se}		,				0,040
	d =	433,7	G =	22,4	R _T	= 7,72

 $U_{Gefach} = 0.129 \text{ W/(m}^2\text{K)}$

Rahmenbereich

zusammengesetztes Bauteil

14,0 cm 80,0 cm 17,	5 %	40,	9 kg/m²		
Rahmenanteil von innen	s mm	ρ kg/m³	kg/m²	λ W/(mK)	R m²K/W
R _{si}					0,100
01 Gipskartonplatte	12,5	800	10,0	0,250	0,050
02 Feder- / Direktschwingabhänger	30,0	_	-	-	_
03 Dampfbremse	1,0	_	_	_	-
04 Holz	220,0	500	110,0	0,130	1,692
05 Holzfaserdämmstoff WLS 046	50,0	160	8,0	0,046	1,087
06 Unterspannbahn	0,2	_	_	_	_
07 Konterlattung	40,0	_	_	_	_
08 Dachlattung	30,0	_	_	_	_
09 Dachdeckung	50,0	_	_	_	_
R _{se}					0,040
	433,7		128,0	RT	= 2,97

 $U_{(R)} = 0.337 \text{ W/(m}^2\text{K})$

 $\begin{array}{ll} R^{'}_{T} &= 1 \, / \, (82,\!50\% * 1/7,\!723 + 17,\!50\% * 1/2,\!969) = 6,\!03 \, \text{m}^2\text{K/W} \\ R^{''}_{T} &= 0,\!10 + 1/(0,\!825/\!0,\!050 + \!0,\!175/\!0,\!050) + 1/(0,\!825/\!0,\!160 + \!0,\!17/\!0.\!17) + \\ 1/(0,\!825/\!6,\!286 + \!0,\!175/\!1,\!692) + 1/(0,\!825/\!1,\!087 + \!0,\!175/\!1,\!087) + 0,\!04 = 5,\!70 \, \text{m}^2\text{K/W} \\ R_{T} &= (R^{'}_{T} + R^{''}_{T})\!/2 = 5,\!87 \, \text{m}^2\text{K/W} \, (\text{maximaler Fehler} = R^{'}_{T} - R^{''}_{T}/2 * R_{T} = 3 \, \%) \end{array}$

Wärmedurchgangskoeffizient

Wärmedurchgangskoeffizient $U = 0,170 \text{ W/(m}^2\text{K)}$ (ohne Korrekturen)

Mindestwerte für Wärmedurchlasswiderstände nach DIN 4108-2

Wärmegedämmte Dachschrägen (DIN 4108-2:2013). Erhöhte Anforderungen für leichte Bauteile mit einer flächenbezogenen Gesamtmasse < 100 kg/m²

 $R_{(G)}$ 7,58 \geq 1,75 m^2K/W erfüllt die Anforderungen R 5,73 \geq 1,00 m^2K/W erfüllt die Anforderungen

Bauteil: FE01 - Fenster (Wärmeschutzverglasung)
Dreischeibenisolierverglasung, g \leq 53 %
Wärmedurchgangskoeffizient nach EN ISO 10077-1
Einfachfenster, Tabellenwert $U_W = 0.95 (1.0) W/(m^2K)$
U-Wert des Fensters mit Dreischeibenverglasung, 30% Rahmenanteil, Tab. F.3 (verbesserter Randverbund) mit $U_g = 0,70$ und $U_f = 1,10$ W/(m²K)
U _W = 0,95 W/(m²K) wird für die weiteren Berechnungen angenommen
Bauteil: FE02 - Dachflächenfenster
Dreischeibenisolierverglasung, g \leq 53 %
Wärmedurchgangskoeffizient nach EN ISO 10077-1
Einfachfenster, Tabellenwert $U_W = 1,00 (1,0) W/(m^2K)$
U-Wert des Fensters mit Dreischeibenverglasung, 30% Rahmenanteil, Tab. F.3 (verbesserter Randverbund) mit $U_g=0,70$ und $U_f=1,20$ W/(m²K)
$U_W = 1,00 \text{ W/(m}^2\text{K)}$ wird für die weiteren Berechnungen angenommen
Bauteil: T-01 Türen UG zur Tiefgarage bzw. unb. Bereichen
Wärmedurchgangskoeffizient U = 1,600 W/(m²K)
Bauteil: T-01 Eingangstür
Wärmedurchgangskoeffizient U = 1,600 W/(m²K)

Anhang B

Nachweis des sommerlichen Wärmeschutzes nach DIN 4108-2

Anhang B: Nachweis des sommerlichen Wärmeschutzes nach DIN 4108-2

Projekt M157668 Josefstaler Straße Schliersee

Bauteil: SWS Raum 01: 1.0G - Whg. 100-01 - Kinderzimmer 1

Nettogrundfläche $A_G = 12,46 \text{ m}^2$

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A_W [m ²]	g [%]	F_{C}	A_W*g*F_C	
1 Fenster Süd 2 Fenster West	Süd 90° West 90°	1,70 1,70	53 53	0,30	- /	
		3,4 m ²			0,54	

eingesetzte Sonnenschutzvorrichtungen: Fc = 0.3 Verglasung g > 0.4 dreifach + Fensterläden / Rollläden 3/4tel geschlossen

grundflächenbezogener Fensterflächenanteil = 3,41 / 12,46 = 0,27 (27%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 0,54 / 12,46 = 0,043$

zulässiger Sonneneintragskennwert

Klimaregion B gemäßigt
Gebäudenutzung Wohngebäude
Bauart schwer
Nachtlüftung ohne
Sonneneintragskennwert S₁ +0,074

Korrekturen

für Fensterflächenanteil $-0,002 \ (f_{WG} = 0,27)$ für Sonnenschutzverglasung -0,000 für geneigte Fenster -0,000 für nordorientierte Fenster $>60^{\circ}$ -0,000

für passive Kühlung Sonneneintragskennwert S+ -0,002

 $S_{vorh} = 0.043 \le 0.072 = S_{zul} (= 0.074 - 0.002)$

Bauteil: SWS Raum 02: 1.OG - Whg. 100-01 - Kinderzimmer 2

Nettogrundfläche $A_G = 12,66 \text{ m}^2$

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A_W [m ²]	g [%]	F_{C}	A_W*g*F_C
1 Fenster Süd 2 Fenster West	Süd 90° West 90°	1,70 1,70	53 53	0,30 0,30	0,27 0,27
		3,4 m²			0,54

eingesetzte Sonnenschutzvorrichtungen: Fc = 0.3 Verglasung g > 0.4 dreifach + Fensterläden / Rollläden 3/4tel geschlossen

grundflächenbezogener Fensterflächenanteil = 3,41 / 12,66 = 0,27 (27%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 0,54 / 12,66 = 0,043$

zulässiger Sonneneintragskennwert

Klimaregion B gemäßigt
Gebäudenutzung Wohngebäude
Bauart schwer
Nachtlüftung ohne
Sonneneintragskennwert S₁ +0,074

Korrekturen

für Fensterflächenanteil $-0,002 (f_{WG} = 0,27)$ für Sonnenschutzverglasung -0,000

für geneigte Fenster -0,000
für nordorientierte Fenster >60° -0,000
für passive Kühlung Sonneneintragskennwert S+ -0,002

 $S_{vorh} = 0.043 \le 0.072 = S_{zul} (= 0.074 - 0.002)$

Bauteil: SWS Raum 03: 1.OG - Whg. 100-10 - Kinderzimmer 2

.....

Nettogrundfläche $A_G = 12,66 \text{ m}^2$

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A_W [m ²]	g [%]	F_{C}	A_W*g*F_C	
1 Fenster Nord 2 Fenster West	Nord 90° West 90°	1,70 1,70	53 53	•	0,27 0,27	
		3,4 m²			0,54	

eingesetzte Sonnenschutzvorrichtungen: Fc = 0.3 Verglasung g > 0.4 dreifach + Fensterläden / Rollläden 3/4tel geschlossen

grundflächenbezogener Fensterflächenanteil = 3,41 / 12,66 = 0,27 (27%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 0,54 / 12,66 = 0,043$

zulässiger Sonneneintragskennwert

Klimaregion B gemäßigt
Gebäudenutzung Wohngebäude
Bauart schwer
Nachtlüftung ohne
Sonneneintragskennwert S₁ +0,074

Korrekturen

für Fensterflächenanteil $-0,002 (f_{WG} = 0,27)$ für Sonnenschutzverglasung -0,000

für geneigte Fenster -0,000
für nordorientierte Fenster >60° +0,050
für passive Kühlung -

Sonneneintragskennwert S+ +0,048

 $S_{vorh} = 0.043 \le 0.122 = S_{zul} (= 0.074 + 0.048)$

Bauteil: SWS Raum 04: 1.OG - Whg. 100-01 - Schlafzimmer

Nettogrundfläche $A_G = 14,07 \text{ m}^2$

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A _W [m²]	g [%]	F_{C}	A_W*g*F_C	
1 Fenster Süd	Süd 90°	1,70	53	0,30	0,27	
		1,7 m²			0,27	

eingesetzte Sonnenschutzvorrichtungen: Fc = 0.3 Verglasung g > 0.4 dreifach + Fensterläden / Rollläden 3/4tel geschlossen

grundflächenbezogener Fensterflächenanteil = 1,70 / 14,07 = 0,12 (12%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 0.27 / 14,07 = 0.019$

zulässiger Sonneneintragskennwert

 $\begin{tabular}{lll} Klimaregion & B gemäßigt \\ Gebäudenutzung & Wohngebäude \\ Bauart & schwer \\ Nachtlüftung & ohne \\ Sonneneintragskennwert <math>S_1$ & +0,074

Korrekturen

für Fensterflächenanteil +0,032 (f_{WG} = 0,12)

für Sonnenschutzverglasung
für geneigte Fenster
für nordorientierte Fenster >60°
für passive Kühlung
Sonneneintragskennwert S+
-0,000
-0,000
-0,000
-0,000
-0,000

 $S_{vorh} = 0.019 \le 0.106 = S_{zul} (= 0.074 + 0.032)$

Bauteil: SWS Raum 05: 1.OG - Whg. 100-05 - WEK

Nettogrundfläche A_G = 35,13 m²

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A _W [m²]	g [%]	F_{C}	A_W*g*F_C
1 Fenster Süd	Süd 90°	1,70	53	0,30	0,27
2 Fenster Süd	Süd 90°	1,70	53	0,30	0,27
3 Fenster Ost	Ost 90°	1,70	53	0,30	0,27
4 Fenster Ost	Ost 90°	4,42	53	0,30	0,70
		9,5 m²			1.52

eingesetzte Sonnenschutzvorrichtungen: Fc = 0.3 Verglasung g > 0.4 dreifach + Fensterläden / Rollläden 3/4tel geschlossen ~ <math>Fc = 0.7 Verglasung g > 0.4 dreifach + Sonnenschutz innenliegend, weiß oder reflektierend

grundflächenbezogener Fensterflächenanteil = 9,53 / 32,13 = 0,30 (30%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 1,52 / 32,13 = 0,047$

zulässiger Sonneneintragskennwert

Klimaregion B gemäßigt
Gebäudenutzung Wohngebäude
Bauart schwer
Nachtlüftung ohne
Sonneneintragskennwert S₁ +0,074

Korrekturen

für Fensterflächenanteil $-0,009 \ (f_{WG} = 0,30)$ für Sonnenschutzverglasung-0,000für geneigte Fenster-0,000für nordorientierte Fenster >60°-0,000für passive Kühlung-Sonneneintragskennwert S+-0,009

 $S_{vorh} = 0.047 \le 0.065 = S_{zul} (= 0.074 - 0.009)$

Bauteil: SWS Raum 06: DG - Whg. 200-15 - Galerie mit Luftraum

.....

Nettogrundfläche $A_G = 31,50 \text{ m}^2$

Ein rechnerischer Nachweis ist erforderlich

vorhandener Sonneneintragskennwert

Fensterflächen	Orientierung / Neigung	A_W [m ²]	g [%]	F_{C}	A_W*g*F_C
1 DFF Süd 2 DFF Süd	Süd 21° Süd 21°	1,82 1,82	53 53	0,80	0,77
3 DFF Süd	Süd 21°	1,82 5,5 m ²	53	0,80	0,77

eingesetzte Sonnenschutzvorrichtungen: Fc = 0,8 Verglasung g > 0.4 dreifach + Sonnenschutz innenliegend, hell, Transparenz < 15%

grundflächenbezogener Fensterflächenanteil = 5,47 / 31,50 = 0,17 (17%)

vorh. Sonneneintragskennwert $S_{vorh} = (\Sigma A_{w,i} * g_i * F_{c,i}) / A_G = 2,32 / 31,50 = 0,074$

zulässiger Sonneneintragskennwert

Klimaregion	B gemäßigt
Gebäudenutzung	Wohngebäude
Bauart	schwer
Nachtlüftung	erhöht, n \geq 2 h ⁻¹
Sonneneintragskennwert S.	±0 113

Sonneneintragskennwert S₁ +0,113

Korrekturen

für Fensterflächenanteil $+0.021 (f_{WG} = 0.17)$ -0,000 für Sonnenschutzverglasung für geneigte Fenster -0.035 für nordorientierte Fenster >60° -0,000 für passive Kühlung Sonneneintragskennwert S+ -0,014

 $S_{vorh} = 0.074 \le 0.099 = S_{zul} (= 0.113 - 0.014)$